
1

USING INFOPIPES TO
ANALYZE STREAMED

TRAFFIC DATA

Catherine Vilhauer
Portland State University

July, 2006

2

Table of Contents

1. INTRODUCTION .. 3
2. BACKGROUND .. 3

2.1. Infopipes ... 4
2.2. Streamed Traffic Data... 5

2.2.1 How Single-Loop Traffic Detectors Work ... 5
2.2.2. Berkeley Highway Laboratories Data versus PORTAL Data 7

3. PROJECT GOALS ... 9
4. PROBLEMS ENCOUNTERED... 9
5. ALGORITHMS .. 10
6. IMPLEMENTATION... 11

6.1. Kwon’s Algorithm .. 11
6.2. General Example... 12
6.3. Infopipes Implementation ... 13
6.4. Description of the Pipeline.. 13
6.5. Converting Berkeley Highways Laboratory Data to PORTAL format 14
6.6. Implementation of the Pipeline for these Further Experiments 15
6.7. Further Experiments.. 17

7. SUMMARY.. 17
8. USEFUL INFORMATION .. 18
9. REFERENCES ... 18

3

1. INTRODUCTION

Highways across the country are monitored by Civil Engineers to try to ensure good
traffic flow. Often traffic is measured using traffic loop detectors, installed under city
highways, which can sense when vehicles move on and off them. In the Portland area
traffic loop detectors have been in operation for a long time and provide useful data.
However, the Portland traffic loop detectors are less sophisticated than many, being
‘single loop detectors’ rather than ‘dual loop detectors’. Single loop detectors have the
drawback that they are unable to distinguish between different types of vehicles, thus
there is no differentiation between cars and trucks travelling down the highway, which
can often be an important metric.

Several algorithms address this problem and allow us to estimate the volume of car traffic
versus truck traffic with single loop detectors. One well-known algorithm was developed
by Kwon (2003) in a paper entitled “Estimation of Truck Traffic Volume from Single
Loop Detector Outputs Using Lane-to-lane Speed Correlation”. The project that I will
outline in this paper builds upon work already completed by Emerson Murphy-Hill in
which he implemented a Smalltalk version of the Kwon traffic algorithm using the
Infopipes abstraction. Infopipes are an object-oriented approach streaming extensively
researched by Professor Andrew Black (2002) and colleagues at Portland State
University and which I will outline in more detail later. The data that the project will
draw upon is Portland traffic data as supplied by Portland State University’s PORTAL
project.

My aim in this paper is to give the reader a general background to the project, including
an introduction to Infopipes, the principles behind how traffic data is analyzed as well as
the data sets we are using. I will discuss project goals, what has been implemented to
date, and the problems that I encountered when trying to change the existing
implementation. I will then lay out the architecture for a possible implementation in
Smalltalk. The final section of this paper contains several suggested experiments.

1. BACKGROUND

To give a general overview of this project I must first describe the technologies involved.
This includes the Infopipe abstraction which has been a focus of research of Professor
Andrew Black and colleagues for several years, as well as an overview of the streamed
media data that will be used for the project, namely traffic data collected from data
stations on highways around the Portland area.

The original implementation was carried out by Emerson Murphy-Hill in 2005. His
implementation took an algorithm developed by Kwon et al (2002) to estimate the
number of trucks versus cars on highways that are equipped with single-loop detectors.
He used California traffic data from Berkeley Highway Laboratories, which is freely
available on their website, to simulate streaming.

4

The project outlined in this paper builds upon the existing implementation and aims to
use data from the Portland area. Portland State University’s Intelligent Transportation
Systems Laboratory (PORTAL), has a repository of traffic data from the Portland area.
As a result the goal of this project was to convert the existing implementation for Kwon’s
algorithm to also accept Portland State University data.

2.1. Infopipes

Professor Andrew Black and colleagues at Portland State University have been
researching an abstraction called Infopipes for several years. Infopipes are an object-
oriented abstraction for multi-media streaming. They are designed to simplify the task of
building distributed streaming applications. With use of a series of components, or
Infopipes, such as sinks, buffers, filters, broadcasting pipes, and multiplexing pipes,
complex systems can be built up easily to form a complex Infopipeline. For an in depth
overview of Infopipes see Black et al (2002). I will give a brief overview of Infopipes
here.

Each Infopipe has a set of Inports through which data flows in and a set of Outports
through which data flows out. Data can be either pushed or pulled through the Infopipes
depending on the polarity of the port. We say that a port that invokes a push or pull
method on another port is of positive polarity, and conversely a port that is invoked has
negative polarity.

Take for example the following simple Infopipeline:

In the first example, the downstream port invokes the method push: anItem on the
upstream port. The downstream port has positive polarity since it sends a message to the
upstream port. The upstream port has negative polarity since the downstream port
invokes it.

We see a similar thing in the second example. The upstream port sends a pull message to
the downstream port and is therefore of positive polarity. The downstream port is invoked
by the upstream port and therefore is of negative polarity.

Some commonly used Infopipes are as follows:

Push: anItem Pull

AnItem Ack

+ - - +

Figure 1: Push and Pull mode communication

5

 Buffer. This Infopipe has a negative Inport, a negative Outport and some storage.
Data flows into the buffer by being pushed by downstream Infopipes, and only flows
out of Outport when given a pull message by upstream ports.

 Pump. This Infopipe has a positive Inport and a positive Outport. It pulls data into it
at a rate that we can set within the Infopipe and pushes it out of its Outport.

 Split tee. This is an Infopipe that has one Inport but several Outports. Data that flows
in is then split and forwarded out the Outports.

 Merge tee. This Infopipe has several Inports, but only one Outport. Data flows in
through the Inports and is then forwarded out the single Outport.

These simple Infopipes can be combined to form large and complex Infopipelines. We
aim in this project to be able to construct a reasonably complex Infopipeline to analyze
our streamed traffic data from simple Infopipe components such as those described
above.

2.2. Streamed Traffic Data

Traffic sensors are installed on many highways in the United States in order to monitor
the volume and flow of traffic and stream this data back to data centers for analysis.
These sensors come in the form of loop detectors, which are lain under the surface of
highways and can detect when vehicles moving on and off them. These loop detectors are
either:

 Single-loop detectors: a single sensor laid under the highway which can sense when a
vehicle goes on the loop and subsequently leaves the loop.

 Dual-loop detectors: 2 single loops laid in series a known distance apart in some lane
on the highway. These provide more data than single-loop detectors as they can
measure the time between when a vehicle moves onto the first loop and then onto the
second can. This can be extrapolated to provide data on how long the vehicle is as
well as vehicle velocity.

In the Portland area, single-loop detector data is collected. The PORTAL project, within
Portland State University’s Intelligent Transportation Systems Laboratory, has a
repository of this data and no access to the more informative dual-loop data.

2.2.1 How Single-Loop Traffic Detectors Work

Figure 2 illustrates the data from a single-loop traffic detector. The loop detector emits a
series of on-off pulses, which register when a vehicle passes on and off the sensor. As
you can see from Figure 2 we can easily count the number of vehicles that pass over the
loop, but further analysis is more complicated. As an example, let us attempt to analyze
the data from Figure 2 and make assumptions about vehicle classification and velocity. I
refer to the data in the figure as being a series of lanes, with the data in the top third of the
graph being lane 1, the middle data being lane 2, and the bottom third being lane 3.

6

The data from lane 1 could be interpreted in a number of ways. The short duration of
each on-off pulse in lane 1 could indicate that:
a) Several vehicles of short length (i.e. cars) had passed over the loop detector.
b) The velocity of the vehicles in lane 1 is high.

In addition, comparing lane 1 and lane 2 we could argue either that:

a) The velocity of vehicles in lane 1 is constant and fairly fast in comparison with the
velocity of lane 2 where the long on-pulse indicates that the traffic had slowed down
temporarily

b) A truck traveled along lane 2 resulting in the long on-pulse, followed by a car,
resulting in the short on-pulse that followed.

From these contrasting conclusions it is evident that without further information we are
unable to make any conclusions. The single-loop traffic data alone simply does not
provide us with enough information.

Luckily there are several algorithms which take data from single-loop traffic sensors and
estimate the breakdown of cars versus trucks. The Kwon algorithm, which we are
implementing in this project, does this very thing and bases its estimations on two key
assumptions:

Figure 2: An illustration of data retrieved from Single-loop traffic sensors
(courtesy of Emerson Murphy-Hill)

7

1. Trucks are not allowed on the inner (fast) lane of the highway being monitored
2. The mean velocity of each of the outer lanes is assumed to be a certain percentage

less than the velocity of the inner lane.

These assumptions allow us to interpret the data in a more meaningful way. For example,
if we assume that no trucks are travelling along the innermost lane and we know the
average length of cars, then we can find the average velocity of the vehicles travelling
along the inner lane. By assuming that the velocity of vehicles in Lane 2 is 5% less than
the speed of Lane 1 we can extrapolate the velocity of vehicles in Lane 2. We can do the
same with Lane 3. Once we know the mean velocity of each lane, we can then calculate
the length of each of the vehicles that crosses the sensor.

A more detailed overview of Kwon’s algorithm is left until [xxxx].

2.2.2. Berkeley Highway Laboratories Data versus PORTAL Data

Berkeley Highway Laboratories Data
The original Infopipe implementation of Kwon’s algorithm on streamed traffic data uses
data from Berkeley Highway Laboratories which has the advantage of providing both
single-loop and dual-loop traffic data. Our proposed implementation uses PORTAL data
which is single-loop, and which differs slightly from the Berkeley data set.

Berkeley Highway Laboratories data is of reasonably fine granularity. It is emitted as one
second aggregates of on / off pulses which indicate when a vehicle passes over a loop.
Each data station has a number and emits a stream of data to the data center. It encodes
within it the time, then name of the station and the lane number. A sample raw data file
entry can be seen in Figure 3.

Fields of interest to us in Figure 3 are:
 First series of digits – refer to the time stamp for that data entry
 Fifth series of digits – refer to the station identification number
 Final series – Controller Data Packet as seen in more detail in Figure 4.

To decipher the Controller Data Packets, the BHL web site says the following:

27100EF14892E44

Figure 4: Sample Controller Data Packet

1014956125000 1014956125000 0 7150 8 27100EF14892E44

Figure 3: Sample Raw data file entry

8

Each block of three characters, starting from the 8th position and continuing
through all but the final two characters of Field 6, are encoded loop transitions.
Each three-character hexadecimal substring, when converted to its equivalent
twelve bits in base 2, describes a single loop transition. The first six bits count the
number of 1/60 second intervals ("ticks") that have elapsed at the time of the loop
transition. The seventh bit indicates the transition type ("on" or "off"). The final
five bits indicate the controller port from which the transition was observed; the
port corresponds to a particular loop at that station, as indexed in the Controller
configuration files.

From http://bhl.its.berkeley.edu:9006/bhl/data_guide/reference/controller_packet.html

The encoding for this Controller Data packet is described at the Berkeley Highway
Laboratories web site.

Portal Data
The Portal data, in comparison, is aggregated into 20s chunks and is emitted as Total
Occupancy and Volume sums over this 20s time period. The raw data is analyzed for us
by a script that is run each night and aggregated into Excel files which maintain the
following information

 Station identification number
 Time
 Vehicle count
 Occupancy

This pre-processed information is a double-edged sword. While in some ways it is
convenient be able to ignore the problems of converting raw data to meaningful
information, there are a number of drawbacks.

a) We do not know the details of how these values are calculated, as they are calculated
in a script which is run every 24 hours which we have not been able to analyze.

b) Are the aggregation procedures accurate?
c) Is data lost when the data is aggregated?

The final question is an interesting one. As explore it further, let us examine Lane 1 data
in Figure 1.

At the beginning of the time period in Figure 1, a vehicle is already on the sensor for
Lane 1, characterized by the fact that the time period starts out registering an on-pulse. At
the very end of the time period a vehicle moves onto the sensor, as we register an on-
pulse with no corresponding off-pulse. When analyzing the raw data we can take into
account these orphan pulses and if we register an on-pulse without a corresponding off-
pulse in one time period, we can roll the on-pulse over into the next time period. It is
interesting to speculate whether the PORTAL data aggregation script does this more

9

sophisticated analysis when it processes the streamed data. If it doesn’t how much does
this affect our results?

3. PROJECT GOALS

As a result of the above work as well as speculation over the accuracy of information
received from an aggregated stream of data as described above, the goals of this project
were as follows:

 To convert the existing Infopipeline which calculates truck and car volume for
single-loop data for the Berkeley Highway Laboratories (BHL) to accept data
from the Portal web site.

 To aggregate BHL data to the format used by PORTAL and compare the results
of both formats to analyze whether accuracy had been lost in the aggregation.

Secondary goals of this project were:

 To understand the Infopipes abstraction
 To learn Smalltalk (to implement the Infopipeline)
 To analyze the existing pipeline and come up with an algorithm to allow it to

accept BHL data.

4. PROBLEMS ENCOUNTERED

It seemed, initially, to be a fairly trivial task to convert the existing Infopipeline to accept
a slightly different data format. However, there were three main problems.

Firstly, as I mentioned earlier, the data available from BHL and Portal are intrinsically
different: BHL outputs data as a one second aggregation of on/off pulses for each loop;
Portal data is outputted as pre-calculated Occupancy and Vehicle Counts which is
aggregated over a 20 second period. The existing pipeline designed for the BHL data set
passes a stream of on/off pulses (a Controller Data object) through the entire pipeline and
calculations are performed on this stream throughout. Thus the entire pipeline relies on a
string, or a Controller Data object. The Portal data doesn’t need Controller Data objects
as they represent the raw data from the traffic sensor. As a result, integrating a very new
and different data format into the existing pipeline is a non-trivial problem.

Secondly, the existing pipeline uses at its heart two objects that calculate the Occupancy
and Vehicle Count based upon the Controller Data objects that are passed into them.
These Occupancy Pipes, and VehicleCounters occur throughout the pipeline in different
places. As I mentioned earlier, Portal data already consists of aggregate Occupancy and
Vehicle counts for each 20-second period.

10

To use the existing pipeline to integrate both a new data format which already calculates
the very heart of the existing pipeline in an elegant, object-oriented fashion seemed to be
a non-trivial task.

A third and final problem exists when considering the problem of whether accuracy is
lost in the process of aggregating data into 20 second chunks. We do not know how the
PORTAL aggregation script works. If the orphan pulses that I described in the section
above are not taken into account, our results could be significantly skewed.

5. ALGORITHMS

I devised the following alternative procedures to deal with the above problems. Here I
discuss the pros and cons of each of the algorithms in turn.

1. Convert BHL data to Portal format and rewrite the existing implementation to
understand this format.

It would be possible to rewrite the existing implementation to understand a
different format. This was my original intention before I had thoroughly examined
the existing implementation. However, due to the problems outlined above and
the myriad differences that would have to be made to the implementation, I
decided that this would be a hack and a non-trivial one at that.

2. Build a new pipeline which uses a generic data format and calculates the total
Occupancy and Vehicle Count at the beginning of the pipeline.

Since Occupancy and Vehicle Count totals have already been calculated for us,
the pipeline would be much simpler than the original implementation. We would
then simply have to convert the BHL data to Portal format and compare data from
the original implementation to the new implementation.

The benefit of this approach is that it would result in a pipeline that allowed
generic data to be passed into it.

Problems with this approach are that it is entirely reinventing the wheel. Very
little code reuse would be possible.

3. Convert Portal Data to BHL format and run it through a slightly modified
pipeline.

This is probably the simplest solution of all three. The idea would be to convert
the Occupancy and Vehicle Counts back into the raw data format of on / off
pulses. This would enable almost total code reuse.

This is an unsatisfactory solution in several ways, the greatest of these being the
amount of replication that this would incur. Occupancy and Vehicle Counts would

11

be converted to raw data and passed to the pipeline which would calculate
Occupancy and Vehicle Counts once again. It is a temporary hack for quick
results but not the best solution.

As a result I decided to implement the second solution and rewrite the pipeline. I attempt
to make the algorithm as simple and as reusable as possible.

6. IMPLEMENTATION

6.1. Kwon’s Algorithm

A brief description of the algorithm that we will implement follows.

Kwon’s algorithm takes single loop traffic data from a number of lanes on a highway. It
is based on two assumptions.

 The inner lane on a highway doesn’t have any trucks on it. This is a law in some
states and just best practice in others.

 Highway lanes have lane to lane velocity correlation. It has been observed by manual
counting that the velocity in each lane decreases about 5% from the previous where
lanes are numbered from innermost to outermost with the inner lane being the fastest
of them all.

As a result of these two assumptions, Kwon et al are able to use single loop data to figure
out the number of trucks on the road in a given period of time.

There are a few algebraic equations that we need to define before we go into Kwon’s
algorithm, and a few basic definitions.

 Occupancy, O, is the proportion of time a given point is occupied by vehicles.
 Flow, F, is the number of vehicles that pass a given point in a given time period.’
 Number of vehicles, n
 Time, t
 Period kth vehicle occupies the loop, kt

The PORTAL data supplies these values pre-computed for us but algebraically we could
show them as:

tnF / (Flow = number of vehicles / time)

ttO
n

l

k / (Occupancy = Sum of time each vehicle spends on loop)

12

Rather than going into the specifics of Kwon’s algorithm, which can easily be read in his
paper, I will instead give a general overview of how it works and give an example of the
calculations.

The basic idea of Kwon’s algorithm is as follows. We know the number of vehicles in a
given time period over lanes on a particular point on the highway, and we know how long
they spend over the single-loop detector. Using the two assumptions above with
estimations of car and vehicle length, we can separate cars and trucks from each other
when observing single-loop data.

Estimated lengths for cars and trucks is:
 Length of cars, cL = 18.6 ft

 Length of trucks, tL = 61.2 ft

6.2. General Example

Lane 1 (Truck-free)
We take the Count and the Occupancy from the PORTAL data set, the mean vehicle
length of that lane (18.6ft) and then calculate the mean velocity, 1V , based on these
figures:

OFLV c /1

Lane 2 (5% slower than Lane 1, with trucks)

In this case we do not know the length of the vehicles but we do know the velocity of the
vehicles as it is 95% the value of the velocity of lane 2 which we derived from our initial
assumptions. Therefore we can calculate the Number of trucks as follows:

100

95
12 VV Mean Velocity of Lane 2

2

2
22 F

O
VL Mean Vehicle Length of lane 2. 2O is Occupancy of

lane2, 2F is Flow of Lane 2

2PT
ct

c

LL

LL

 2 Proportion of trucks for Lane 2, 2PT

To get the actual number of trucks that have passed we can use the following equation:

nPTT 22 Number of trucks for lane 2, 2T

13

The subsequent lanes can be calculated in a similar way to lane 2. We would estimate the
velocity of the lane based on the 5% decrease from the previous lane. We would then
calculate the Proportion of trucks based on our length calculation above, and then the
overall number of trucks based on the fourth equation above.

6.3. Infopipes Implementation

The implementation of this algorithm using Infopipes should be reasonably simple. The
pipeline in figure 4 demonstrates how it should work.

Each pipeline corresponds to the equations above and is designed to take PORTAL data,
which is correlated, into 20-second aggregates.

6.4. Description of the Pipeline

 Vehicle Counter
This pipe would take PORTAL Flow data from the data file and convert it to numeric
format. This pipe could then be easily modified to form a converter pipe which
converted any data format to a generic vehicle count format.

Figure 5: Proposed Pipeline

Occupancy
Pipe

Vehicle
Counter

Lane 1

Occupancy
Pipe

Vehicle
Counter

Lane 2

Occupancy
Pipe

Vehicle
Counter

Lane 3

Mean
Velocity

Constant: Avg
Car Length

Function
Pipe

Vehicle
length

Truck
Proportion

Truck
Counter

Vehicle
length

Truck
Proportion

Truck
Counter

Function
Pipe

Truck Pipe

14

 Occupancy Pipe
This would simply take PORTAL data and convert it to numeric format. As with the
Vehicle Counter, this pipe could also be easily be replaced or adapted to form a
converter pipe which converted any data format to a generic vehicle count format.

 Mean Velocity
This pipe would take as its inputs the occupancy, flow and car length for lane 1 and
output the mean velocity for that lane.

 Function Pipe
This pipe performs the velocity correlation function, takes the velocity of the previous
lane and computes the velocity of the next lane, which will be 5% less than the
previous lane based on our assumptions. This

 Vehicle Length Calculator
The vehicle length calculator takes as inputs the occupancy and vehicle count for that
lane as well as the average speed for that lane and outputs the mean vehicle length.

 Truck Proportion Pipe
This pipe takes as input the mean vehicle length and calculates the proportion of
trucks to cars within that.

 TruckCounter
This pipe takes the proportion of trucks to cars and the total number of vehicles
counted and converts that into a numeric count of how many trucks and cars passed
along that lane.

 Truck Pipe
The truck pipe would simply take the vehicle count from lane 1 and output the
number of trucks and cars for that lane (0 trucks and x cars).

6.5. Converting Berkeley Highways Laboratory Data to PORTAL format

In order to test the validity of the PORTAL aggregated data versus the fine granularity
Berkeley Highways Laboratory data, we need to convert the BHL data to PORTAL
format and see whether any accuracy is lost.

As mentioned in earlier sections, the method by which the PORTAL data is aggregated is
a mystery. We don’t know whether orphan on- or off-pulses which occur at the
boundaries of the aggregation periods are matched up with their corresponding off- or on-
pulses in the subsequent time period. Because we don’t know the aggregation method for
the PORTAL data I suggest that a few experiments with the BHL conversion be carried
out. These experiments should make it clear to us how the PORTAL aggregation script
works and whether we are losing accuracy or not. The experiments I suggest are as
follows:

15

1. Convert the data in an optimum way. This means when the 20 second aggregation
boundaries are met, ensure that any on-pulses that have not yet received
corresponding off-pulses, are recorded and then aggregated into the following 20
second time period. This should ensure that no cars / trucks are lost in the period
between the two 20 second time intervals.

2. Convert the data and discard all on-pulses that do not have corresponding off-pulses.

3. Convert the data and discard all off-pulses that do not have corresponding on-pulses

4. Convert the data and discard all on-pulses that do not have corresponding off-pulses
and off-pulses that do not have corresponding on-pulses.

Data from these experiments when compared with the data resulting from calculations
deduced from the BHL raw dataset should give us some interesting results which will
show one of the following:

 Much accuracy is lost when aggregating data into 20-second chunks and therefore
raw data such as BHL’s data set is highly preferable. If we discover that the PORTAL
data aggregates according to algorithm number 4 in the section above, then this result
may be the case.

 Some accuracy is lots due to a particular flaw in the aggregation algorithm,
corresponding to case 2 or 3 above.

 No accuracy is lost at all, which will be an interesting discovery in its own right.

6.6. Implementation of the Pipeline for these Further Experiments

In order to carry out these experiments it is necessary for us to change our pipeline
somewhat. The data we will be using is BHL data which is in raw-data format: a series of
on off pulses. Emerson Murphy-Hill has an excellent data converter in his Traffic
implementation where he converts these on-off pulses in a unit called a ControllerData.
This Controller Data takes the on-off pulses and converts them to Occupancy and Vehicle
Counts. As a result we can change our pipeline slightly to incorporate these elements.
See Figure 6.

16

Adapted Pipeline to Convert BHL Data to PORTAL Format

Figure 6: Adapted Pipeline to Convert BHL data to PORTAL format

Occupancy
Pipe

Vehicle
Counter

Lane 1

Occupancy
Pipe

Vehicle
Counter

Lane 2

Occupancy
Pipe

Vehicle
Counter

Lane 3

Mean
Velocity

Constant: Avg
Car Length

Function
Pipe

Vehicle
length

Truck
Proportion

Truck
Counter

Vehicle
length

Truck
Proportion

Truck
Counter

Function
Pipe

Truck Pipe

BufferController
Data

BufferController
Data

BufferController
Data

17

6.7. Further Experiments

Once we have detailed the accuracy of the PORTAL data set versus the BHL data set we
can then start looking at how accurate the data from the single-loop traffic sensors is in
comparison with data from the dual-loop traffic sensors. These experiments could be
carried out with Berkeley Highway Laboratories data, with our pipeline as described
above, and then compared with data from dual loops which can also be found on their
website. This will give an interesting insight into whether or not single-loop data can be
used to reasonably accurately measure highway volume.

7. SUMMARY

In this paper I have outlined the initial project as it was assigned to me in Fall Term 2006.
I then discussed the background to the project, the Infopipes abstraction, Kwon’s traffic
algorithm, and problems that I saw with the current implmentation.

I then have outlined a pipeline that I think should be straightforward to implement that
will integrate well with the excellent graphing framework that has been set up by
Emerson Murphy-Hill in his implementation.

Overall there are some interesting conclusions that could be drawn from the experiments
that I have outlined in this paper. Whether or not it is necessary to keep data of such fine
granuarlity such as that which Berkeley Highway Laboratories is an interesting question.
Also it is interesting to see whether the single-loop data is reasonably accurate when
compared to data from dual-loops or whether much information is lost. This could be of
great importance when considering whether to upgrade entire highway systems with
dual-loop traffic sensors, or to simply make do with a single-loop sensor.

18

8. USEFUL INFORMATION

Visit http://www.cs.pdx.edu/~cv/infopipes for a list of sources for the experiments, as
well as the papers that I have mentioned.

Visit Emerson Murphy-Hill’s website at http://www.cs.pdx.edu/~emerson for details of
his work into the Infopipes traffic implementation.

Berkeley Highway Laboratories: http://bhl.its.berkeley.edu:9006/bhl/research/index.html

PORTAL: http://portal.its.pdx.edu/

9. REFERENCES

Jaimyoung Kwon, Pravin Varaiya, and Alexander Skabardonis, "Estimation of Truck
Traffic Volume from Single Loop Detectors Using Lane-to-Lane Speed Correlation"
(July 1, 2003). California Partners for Advanced Transit and Highways (PATH).

A. P. Black, J. Huang, R. Koster, J. Walpole, and C. Pu, “Infopipes: An Abstraction for
Multimedia Streaming” (2002). Multimedia Systems 8: 406 - 419

R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu, "Infopipes for Composing
Distributed Information Flows," Oregon Graduate Institute, Department of Computer
Science, Beaverton, OR 01-005, 2001

E. Murphy-Hill, Report on his implementation, Portland State University, 2005

